Interface structure and atomic bonding characteristics in silicon nitride ceramics.
نویسندگان
چکیده
Direct atomic resolution images have been obtained that illustrate how a range of rare-earth atoms bond to the interface between the intergranular phase and the matrix grains in an advanced silicon nitride ceramic. It has been found that each rare-earth atom bonds to the interface at a different location, depending on atom size, electronic configuration, and the presence of oxygen at the interface. This is the key factor to understanding the origin of the mechanical properties in these ceramics and will enable precise tailoring in the future to critically improve the materials' performance in wide-ranging applications.
منابع مشابه
On the Effect of Local Grain-Boundary Chemistry on the Macroscopic Mechanical Properties of a High-Purity Y2O3-Al2O3-Containing Silicon Nitride Ceramic: Role of Oxygen
The effects of grain-boundary chemistry on the mechanical properties of high-purity silicon nitride ceramics have been investigated, specifically involving the role of oxygen, present along the grain boundaries, in influencing the fracture behavior. To avoid complications from inadvertently introduced impurities, studies were performed on a high-purity Si3N4 processed using two-step gas-pressur...
متن کاملOn the Effect of Local Grain-Boundary Chemistry on the Macroscopic Mechanical Properties of a High Purity Y2O3-Al2O3-Containing Silicon Nitride Ceramic
The effects of grain-boundary chemistry on the mechanical properties of a high-purity silicon nitride ceramics were investigated, with specific emphasis on the role of oxygen. Variations in the grain-boundary oxygen content, through control of oxidizing heat treatments and sintering additives, was found to result in a transition in fracture mechanism from transgranular to intergranular fracture...
متن کاملEffects of the Amorphous Oxide Intergranular Layer Structure and Bonding on the Fracture Toughness of a High Purity Silicon Nitride
The microstructural evolution and structural characteristics and transitions in the thin grainboundary oxide films in a silicon nitride ceramic, specifically between two adjacent grains and not the triple junctions, are investigated to find their effect on the macroscopic fracture properties. It is found that by heat treating a model Si3N4-2wt% Y2O3 ceramic for ~200 hr at 1400°C in air, the fra...
متن کاملMobility control of ceramic grain boundaries and interfaces
Grain boundary mobility and grain-liquid boundary mobility in ceramics vary vastly from material to material. Their characteristics are sensitive to the crystal structure, the nature of bonding, orientation, stoichiometry and composition. More directly, mobility can be lowered by decreasing the interfacial energy and anisotropy or increasing solute drag, liquid viscosity, particle pinning and g...
متن کاملA NEW GENERATION OF OXYNITRIDE GLASSES CONTAINING FLUORINE
Oxynitride glasses are found as grain boundary phases in silicon nitride ceramics. They are effectively alumino-silicate glasses in which nitrogen substitutes for oxygen in the glass network, and this causes increases in glass transition and softening temperatures, viscosities (by two to three orders of magnitude), elastic moduli and microhardness. Calcium silicate-based glasses containing fluo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 306 5702 شماره
صفحات -
تاریخ انتشار 2004